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Structure of a Spinning Point Particle at Rest 
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The momentum, angular momentum, and energy of a spinning particle each 
consists of two terms, as if the particle were composed of two other particles 
that move coherently in different orbits about their common center of mass. 
The conditions that the momentum terms cancel each other and that the 
orbital angular momenta should be quantized lead to a series of quantized 
mass-energy levels and mass ratios that describe the relevant experimental data 
to better than 0.25%. The correlated particles move as if they have a potential 
energy that is constant for very small distances from the fixed center of mass 
and that increases linearly for large distances, but no quarks or gluons are 
postulated. Baryons and mesons are linked to each other, as are baryons and 
antibaryons. 

1. MOMENTUM, ENERGY, AND MASS 

I t  is usual ly  assumed  tha t  the m o m e n t u m  of  an object  is its mass  m 
t imes the veloci ty  v o f  its center  o f  mass,  with m replaced  by  the relativis- 
t ical ly increased mass  m7 when it is necessary to take  tha t  effect into 
account .  I t  is also assumed  tha t  the to ta l  energy is mTc 2. I f  the radius  o f  the 
object  is small  c o m p a r e d  with o ther  dis tances  tha t  occur  in the p rob lem,  as 
for  the ear th  in its orb i t  a r o u n d  the sun, it is a g o o d  a p p r o x i m a t i o n  to t rea t  
it as a " p a r t i c l e " - - a  po in t  o b j e c t - - c o i n c i d e n t  with its center  o f  mass.  
However ,  if  the par t ic le  has  a spin ~, its m o m e n t u m  is no t  s imply m?v and 
its energy is not  s imply m ? e Z - - o t h e r  terms,  p r o p o r t i o n a l  to the spin, must  
be a d d e d  to  these expressions,  These extra  terms are comple te ly  negligible 
for  the ea r th  ( ~  10-~5), and  even for an e lec t ron in an a t o m  they are small  
[-- ,(Ze)2],  a l though  large enough  to account  for  the fine s t ructure  o f  
spectral  lines. However ,  the smal ler  the region in which the par t ic le  moves,  
the more  i m p o r t a n t  these terms become.  F o r  a par t ic le  confined to a region 
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of dimensions ~ a / r n c ,  these extra terms, often neglected, are comparable 
in magnitude to the usual ones. 

It has been known for decades that energy and electric charge trans- 
form differently under a Lorentz transformation and that if a spinning 
particle is charged and is moving with velocity v relative to an observer, its 
center of  mass lies outside of  it, being separated from it by the vector 
(v x ~ ) / E ,  where E is its energy (Moller, 1952, pp. 170-173). I f  this vector 
remains constant in magnitude and direction for a free particle, this means 
that the center of  charge (sometimes called the proper center of  mass) and 
the center of  mass, coincident when the particle is at rest, move parallel to 
each other, separated by this distance. 

However, there is no reason to assume that this vector must remain 
fixed in direction. The center of mass of  a free particle can move with 
constant (including zero) velocity, and the particle, with its charge, if any, 
can move in a circle around it with velocity v. I f  the center of  mass is at 
rest, there is no orbital angular momentum,  so that the spin o- must be 
constant. With the particle moving in a circle around its center of  mass and 
normal to cr, the radius of the circle is then v a ( M c Z )  -1 and the angular 
velocity co is given by lacol = M c  2. 

In more detail, the extra terms added to the momentum P and energy 
E, and therefore to the rest mass M, are given by 3 

P = m y v  + P~ 

E = m ? c  2 + v . P .  (1) 

= v ' P + m c 2 7  -~ 

so that 

where 

M 2 c  4 =_ E 2 _ p 2 c 2  

= m 2 c  4 --  P~r2c 2 q- (v" p . )z  (2) 

P,  = - 7 2 ( ~  x d v / d t ) c  -2  (3) 

For the special case P = 0, it follows that a . v  = 0, y 2 =  const. Thus 
the particle moves with constant speed in a plane normal to the constant 
spin r and with constant-magnitude acceleration normal to v. I f  v = co • r, 
it follows that 

- - ~  " "0 ---- mc2~)-  l = M C  2 (4) 

3These equations are given implicitly in Bhabha and Corben (1941), Aldinger et al. (1983), 
Hughes and Wu (1977), and Corben (1984), and explicitly in Corben (1961a, equations (24), 
t961b, 1993). 
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This is the classical  l imit  o f  Zitterbewegung. Thus  o is an t ipara l le l  to r and  

r = (o  x v)(Mc2) -1 (5) 

as before  (r  is the vec tor  f rom the fixed center  o f  mass  to the part icle).  

2. F I C T I T I O U S  M A S S  

Because P is the sum o f  two m o m e n t a  and  E is the sum of  two 
energies,  we m a y  write equa t ions  (1) to look like that ,  defining ~, F,  V by 

so tha t  

P~ = # F V ,  v" P~ = p F c  2, F -2 "]- V2/C 2 = 1 (6) 

F o r  P = 0 we also have 

so that  

as expected,  and  

V "  V : C 2 ( 7 )  

# F V  = - m y v  (8) 

[.tF = - - m T f l  2 ( 9 )  

v = fi W ,  V = B2v (19) 

where V2/c 2 = B 2. I f  v < c, then V > c. Since V and  v are paral lel ,  we have 

V = t o x R = f l  2V = f i - 2 ( ~  X r) (1 t )  

so tha t  

fl2R -= r 

R = B2r = (~ • V)(Mc 2) -1 (12) 

The  "pa r t i c l e"  with rest mass  p and  veloci ty V > c moves  on a circle with 
rad ius  R, whi le  the par t ic le  with rest mass  m and  veloci ty v moves  in phase  
with it on a circle with rad ius  r. They  are no t  separa te  part icles,  but  the 
single spinning par t ic le  can be regarded  as c o m p o s e d  o f  them. 

It  also fol lows that  

=imfl, M Z = m 2 + #  2 (13) 

and  that  the energy o f  the par t ic le  moving  on R is 

~ F c  2 = --m?f2c 2 ( F  = iflT) (14) 

The  center  o f  mass  o f  m ? c  2 on  r and  -m?fl2c 2 on R = rf1-2 therefore  
remains  fixed at  the origin.  I t  is as if  an energy M?2c 2 is c rea ted  v i r tua l ly  



22 Corben 

on r and an energy m])2fl2c 2 is annihilated on R, leaving the energy M c  2. 

The energies combine linearly; the masses, according to (13), quadratically. 
It is not surprising that a negative energy appears in the structure. We have 
seen that the center of mass of a point particle with finite spin may lie at 
some point outside the particle, a situation that is impossible unless some 
negative energy regions are generated inside the particle as it is compressed 
to a dimension smaller than a / M c .  

3. COVARIANT RELATIONS 

Equations (1 ) - (3 )  may be expressed in relativistically covariant form 
(see footnote 3): 

P~ = mcu~ + (r~u~ = rncu~ - a ~  

u~P~ = mc,  a~,u ~ = 0 

with 

u~u~ = 1, . = d / d s ,  u ~ = 2  ~ (e =0 ,  1, 2, 3) 

Thus, tUP~ = 0 and for motion in a general electromagnetic field 

P~ = e l i  

so that u@~ = 0. Thus u~P~ = me  is a constant throughout any motion 
caused by electromagnetic forces. 

The rest mass M is given by 

p ~ p ~  = M Z c  2 = m Z c  2 + ~7~s 

For P = 0, this reduces to equation (13) with M = my-  

4. QUANTUM CONDITIONS 

The orbital angular momentum is usually defined as r x P, which is 
zero, but here one particle is on orbit r with momentum - P ~  and the 
other, with equal and opposite momentum P~, is on orbit R. The total 
angular momentum is therefore 

J = - r  x P ~ + R  x P~ = ( /~7)-2r  x P~ = r 

from (12). In this representation of the particle, its spin is transformed into 
orbital motion, the orbital angular momentum of the particle m on the 
radius r being 

L,~ = -f1272r (15) 
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while that of  the 'particle' # on the radius R is 

L~ = ~ 2o 

so that, as noted, Lm + L~ = t~. 
If  now we postulate that 

(L,,): = - n h ;  (L,) .  = Nh;  

it follows that 

n = fie7 2j_- ; N = T Z j z ,  

23 

(15) 

a~ = L h  (16) 

N - n  = ~  (17) 

5. T H E  3 - 3  R E S O N A N C E  A 

For  j__ = 3/2, n = 1, and N = 5/2 it follows that 72 = 5/3 and f12 = 2/5, 
so that, if m~,c 2 is identified with the A3-3 resonance (which we take to be 
1236 MeV), then the emitted particle on R has an energy E~ = rnTf l2= 

494.4 MeV (cf. K + = 493.65 MeV). In MeV we then have m c  2 = 957.40 (cf. 
q '=957.50_+0.24),  P ~ c = m T f l c 2 = 7 8 1 . 7 2  [cf. co( l - )=782.0_+0.1] .  The 
mass A is divided into two parts, 494.4 and 741.6 MeV, i.e., in the ratios 
2/5 and 3/5. If these are combined quadratically as in equation (13), they 
define the mass-energy E '  = M ' c  2 = (13)1/2/5A = 891.29 [cf. K*(1- )  = 
892.1 _+ 0.3]. Similarly ( E  '2 + E~)  ~/2 = (17)~/2/5A = 1019.23 [cf. ~b(1-) = 
1019.41]. These results imply that r/ '2= 3o~2/2. The data yield r/ '2= 
(1.499 + 0.001)~o 2. Apart from the choice n = 1 (which leads to l = 0 in the 
corresponding quantum theory), we have made no assumptions for A, 
although we have used 1236 MeV for its mass instead of the experimental 
value 1232 + 2. We have introduced no quarks or gluons or any interac- 
tions or parameters. At this semiclassical level we find that the very 
existence of  this spin-3/2 resonance implies the existence of a number of  
mass-energy levels that lie within 0.15% of  the masses of  the K -+, r/'(0-), 
and K*, c0, and q~(1-). However, at this level there is no hint of particle 
quantum numbers such as strangeness and isospin, 

6. MATTER AND ANTIMATTER 

Interchange of  N and n and change of  sign of  j_~ lead to the same 
spectrum but with the transformations rn ~ /~ ,  7 ~ F, fl ~ B, r ~ R. In the 
above case, then, N = 1, n = 5/2 and j .  = - 3 / 2  corresponds to F 2=  5/3 
and B 2=  2/5. The orbits are interchanged, suggesting that if m circulates 
on the inner orbit ( j .  > 0), the particle is a baryon, and if m lies on the 
outer orbit (j__ < 0), the particle is an antibaryon. In this latter case, m is 
imaginary and V < c, v > c. Of  course, the sign o f j .  is not dependent on the 
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Table I. Examples of the Transformation m, ? ,  fl, 

v, r ~-+ ~t, F ,  B, V, R 

7 = - i F B  

'? - ( 1  ,82) -1/2 iTfl = F  F=(1 -B2) -I/2 

v/c = [ 1 -  B - I  = c / V  

u = B - 2 V  

/~-2v = V 

Definitions of ~ and 

m c 2 =  - - ~ . . ~ ,  ~r~ �9 ~ < 0 

. ~ = .uc2F-  1 

Kinetic plus mass energy 

E = myc  2 - / i F c  2 = ( F 2 B 2 ~  - ~ 2f12m). a 

-- v .  p + maze / -  = V - p +  # c 2 F  -~ 

= ~ ' L  ~ ' 6  

Kinetic momentum 

P ~ m ? v  + # F V  = (F2F~ �9 6 V  + ?2r 6 v ) c - 2  

= 7 2 ( ~  IlL) " 6Vr 2 = F2(['~ ~ )  " 6 V c  2 

M 2 . = m 2 - - u  2 

arbitrary orientation of  an external set o f  axes. We have taken N and n to 
be positive so that, from (16) and (17), for/~2 < 1 and 7 2 > l , J '  z is positive, 
opposite  to (Lm)=. For B 2 < 1 and F a > 1,j= is negative, the same as  (Lm) z. 

In either case j= has the sign of  the z component  o f  the angular momentum 
of  the outer orbit. Transformations from j= > 0 states to j= < 0 states would 
seem to be impossible because they would require the orbits to interchange, 
moving both particles through the light barrier. This transformation is 
described in Table I, with FL = r for P = 0. 

We note that the baryon is represented by the moving mass m, a 
parameter that, as shown above, is constant under any electromagnetic 
force. However, the antibaryon, the same in mass and in the energies of  its 
internal 'partons,' is represented by. the fictitious mass /~ that was intro- 
duced just to make the extra terms in the momentum and energy look like 
momentum and energy. While /~ is constant for m o t i o n  with constant 
speed, being equal to imfl, it is not at all constant in  general. For the 
antibaryons, fl > 1, but B < 1, and # circulates on the orbit R, which is 
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now the inner orbit. The energy of  the mass m on the outer orbit now 
denotes the energy of  an emitted meson. This one asymmetry between 
baryons and antibaryons could possibly account for the asymmetry be- 
tween them in the universe. Baryons would appear to be more stable 
against disintegration by very high energy collisions, since during those 
collisions/~ can change, but m cannot. 

For  baryons or antibaryons either n or N is half-integral and therefore 
cannot be represented in the corresponding quantum theory by a single-val- 
ued wave function. We may define the integer 

1 1B I': = N - n  - ~ B  = L  - ~  

so that l'_h can represent the z component of  orbital angular momentum. 
We then note that interchange of  N and n and change of  sign of  l'. 
corresponds to sign changes of  both j_~ and B. 

Another interesting aspect of the transformation from j~ > 0 states to 
j: < 0  states is that, for fi < 1, the inner state (radius r, energy M72c 2) 
represents a baryon created and the outer state (radius R, energy MF2c 2) 
represents a meson emitted. For  fl > 1 and therefore B < 1, however, the 
inner state (radius R, energy MFZc 2) represents an antibaryon created and 
the outer state (radius r, energy MT~e 2) now represents a meson emitted. 
Thus, the symmetry between m and #, ? and F, and fl and B not only 
relates particles and antiparticles to each other, it also links fermions and 
bosons. This linkage is at a very elementary level, being determined at this 
level primarily by the accurate theoretical relations between the masses of  
a fermion and the corresponding boson. The ratio of these boson to 
fermion masses is f12= n/N for L > 0 and therefore N > n, and B 2=  N/n 
for n > N .  

7. EFFECTIVE POTENTIAL ENERGY 

These two "particles" are correlated in their motions, but because they 
are moving in circles around their common center of  mass, they behave as 
/f  they are attracted to that center with forces mTflZe2r-1 and ~FB2eZR-I. 
With r = flTa/mc and R = BFa[#c = 7a/mc, it follows that these forces are 
equal and opposite. Considered as a function of  r, the inward force on the 
particle on that orbit would have to be mc2r(r2+ro2)-UZro -~ for that 
particle to stay in orbit (ro = a/me), as if that particle were moving in a 
central field with potential energy 

V = mc2(r 2 q- rO 2) I/2r O- I = myc2 (18) 
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This potential energy is constant ( =  m r  2) for r ~ r0, and it increases 
linearly with r for r > r 0. It is equal to the relativistically increased 
mass-energy of the particle for all r. Similarly, the force that would be 
required to keep the particle # on the radius R is the same except for sign, 
because the orbit is f l - 2  a s  large in radius and the particle energy - -mTf l2c  2 
is _f12 as much. As a function of R, 

V : #c 2(R 2 _~_ Ro 2) 1/2Ro- 1 : - -  m~)fl 2C 2 ( 1 9 )  

(Ro = ~/l~C). However, in differentiating (18) to obtain the force we keep ro 
constant, whereas the force is obtained from (19) by keeping Ro constant. 
Here also V is equal to the kinetic-plus-mass energy of the circulating 
particle, which in this semiclassical picture is negative. The total effective 
potential energy is Me 2. The behavior of (18) for large r is that of "infrared 
slavery," and for small r that of "asymptotic freedom." 

8. PAIR CREATION AND ANNIHILATION 

F o r j  = 1/2, it follows from (17) that 7 2 = 2n + 1 = 2N, so that if M is 
equal to the mass of some spin-l/2 baryon (e.g., p), then m7 = My 2 =  
(2n + 1)M and - m 7 f l  2 = - 2 n M  as if n pairs PP are created on the radius 
r and annihilated on the radius R. In the original single-particle picture, a 
charge e circulates on the radius r. With r = fl2R this is equivalent to a 
charge fl2e on R and a charge 7-2e at the origin, the center of charge 
continuing to circulate on r. In the above case, that would place a charge 
e/(2n + 1) at the origin and the rest on the radius R. However, for a 
particle of charge e and n pairs, the average charge is also e/(2n + 1) [i.e., 
e(n + 1)/(2n + 1) from the charges e and - e n / ( 2 n  + 1) from the charges 
" e ]  and choosing 2n particles out of the (2n + 1) gives an average charge 
2ne/(2n + 1) = fi2e on R. For  n = 1, these fractions are 2e/3, - e / 3 ,  and 
2e/3. 

9. H A D R O N  MASS RATIOS 

Table II gives some examples of relations between hadron masses. 
Here, Me 2 is the difference between the mass-energy of a baryon or meson 
and that of a meson that it may emit, their mass ratio being equal to 
f12 = n/N. .This  energy difference is excited to the virtual state defined by the 
energy of  the particle on the inner orbit, but returns to its normal value 
with the emission of the particle on the outer orbit. For  the special case in 
which M is the mass of a spin-l/2 particle, the 'particle' on the outer orbit 
is a pair that has been created on the inner orbit. As the differences 
between calculations and mass data (mostly within probable error, never 
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Table II. Examples of  Hadron Mass Ratios Compared with Calculated Values of  t2  

Experimental 
n t 2  = n /n  + j :  Baryon Meson mass ratio" 

j_- = 3 / 2  1 2 / 5=0 .400  A K-+(0 -)  0.4007-+8 x 10 -4 
3[2 3/5 = 0.500 E -  p( 1 -)  0.5005 _+ 3 x 10 -4 
2 4/7 = 0.571 f~ q ' (0 - )  0.5725 __+ 3 x 10 -4 
5/2 5/8 = 0.625 A p( 1 ~) 0.624 q'- 10 -3 
3 6/9 = 0.667 E ~ ~b(l-) 0.6655 _+ 1.5 x 10 -4 
7/2 7 /10=0 .700  f~ h l ( l  +) 0.70-+2 x 10 -2 

j__ = 1/2 

q' series 

L = I  

3/2 3/4 = 0.750 I2 + K*-+(I -)  0.7498 -+ 2 x 10 -4 
2 4/5 = 0.800 A K*-+(I -)  0.7994 __+ 2 x 10 -4 
5/2 5/6 = 0.8333 p e)( 1 -)  0.8334 + 2 x 10 -4 
3 6[7 = 0.85714 12+ q~(l -)  0.85710 __+ 5 x 10 -5 
7/2 7/8 = 0.8750 A fo(0 +) 0.874 + 3 x 10 =3 

2 4 /5=0 .8000  Y- ( l / 2 )  q '(0-) ,  0.7996-t-3 x 10- 4 
5/2 5/8 = 0.6250 E~ q ' (0 - )  0.6251 + 3 x 10 .4 
3 6/7 = 0.8571 A(1/2) ;7'(0-) 0.8583 + 3 x 10 -4 

Meson Meson 

1 2/4 = 0.500 f ' t (1 +) p ( l - )  0.50_+ 10 -2 
3/2 3[5 =0 .600  f l ( l  +) p (1- )  0.60_+ 10 -2 
2 4 / 6 = 0 . 6 6 7  h~(1 +) r e ( l - )  0.67__+ 10 -2 
5/2 5]7 = 0.7143 p( 1 - )  r/(0-) 0.714 + 10 -3 

"Particle Data  Group (1990). 

greater than 0.25%) are much less than the splitting of multiplets, in Table 
II we list individual members of each multiplet. 

10. S U M M A R Y  

The relativistic classical mechanics that is the basis for this work has 
been used to explain factors of 2 in magnetic moments, spin-orbi t  cou- 
pling, and Thomas precession, and (with an extra term), to interpret 
measurements of the anomalous magnetic moments of muons and other 
particles (see footnote 3). It is noted here that, according to this level of 
mechanics, the momentum, energy, and angular momentum of a point 
particle with spin are each equal to the sum of those of two spinless 
particles moving on two concentric circles with equal and opposite mo- 
ments (or on a double helix if the momentum is not zero). We have then 
developed for the relativistic classical mechanics of a particle with spin 
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what de Broglie, Bohr, and Rutherford did so many years ago for the 
nonrelativistic mechanics of a particle without spin. For example, from 
equations (4) and (17), 

M c 2  ~ mc27  -1 = j:ho~,  N = n + j :  

Er,, = mTc  2 = Nh~o, E .  = - r n y ~ 2 c  2 = - n h ~  

cP,,, - m~,Hc = c[e~ I = ( n N )  lnho9 = hc / ~ 

so that, with r = ~c/o9 and R = B c / t ,  = c/~o~ 

r = n~;; R = N~ 

The de Broglie relations therefore apply to the individual orbits with their 
common de Broglie wavelength. 

Of course, with very good reason, Bohr and Rutherford introduced 
the Coulomb potential. Here we have not postulated any potential at all. 
However, the two equivalent particles move in phase on two concentric 
circles as if they were moving in a potential the shape of which is derived 
from the analysis. It has the characteristics of both "asymptotic freedom" 
and "infrared slavery." The spin is now represented as orbital angular 
momentum, and the spinning particle automatically contains a number of 
internal "partons" some of which have energies that are precisely equal to 
the rest-energies of other particles. This many-particle picture, derived at 
the semiclassical level from the single-particle picture, therefore offers a 
basis for describing virtual processes such as pair creation and annihilation 
and the excitation of baryon states with the emission of mesons, the masses 
of which appear with remarkable accuracy as simple consequences of the 
analysis. The complexity of a spinning point particle is thus an immediate 
consequence of relativistic classical mechanics, and the discreteness of that 
complexity is a consequence of primitive quantization. There are no 
phenomenological potentials or postulated particles. The only freedom in 
Table II lies in the choice of  the integer or half-integer n. 

APPENDIX. WAVE MECHANICS AND CORRESPONDENCE 
PRINCIPLE 

The Klein-Gordon equation that describes the orbit of particle m on 
the radius r is 

[ ( W -  V )  2 - m2c4]~  = -h2c2V2~b 

where V is the effective potential energy (18) and W is the total energy, in 
this case equal to 2V. The 0- and b-dependent components of the wave 
function are described by spherical harmonics in the usual way, and 
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. 

daR ~ 2  ( W -  V) 2 l(l + 1)] R 
dr 2 =  h2c2 b r2 j 

where R = r6(r) and ~c = h/mc. The factor of  R on the right-hand side has 
a maximum for 

r3 l(l + 1)h2c 2 21(l+ 1)X~ 
= ( W -  V)V' - d~2/dr (A1) 

where ? is defined by the classical relation 

or  

r = 7flJ=Sc 

r 2 

7 2 = - - + 1  
"2 2 

Thus the maximum of R -~ d2R/dr 2, corresponding to a minimum in the 
effective potential for radial motion, occurs for 

r 2 : r2min : [l(l + 1)] I/%22 (A2)  

This corresponds to the classical quantized radius with 72f l2=  n j z  1, and 
n --+ l for large/.  
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